

pg. 1

“IoT, Interfacing with Ignition”

California State University, Northridge

Department of Manufacturing Systems Engineering and Management

MSE 614 – Smart Manufacturing

Submission Date:

May 19, 2023

Professor:

 Adrian Sita

By:

Daniel Diaz, Jack Barrientos

pg. 2

Contents
Abstract .. 3

Introduction .. 3

Flow Diagram ... 4

Clients and Broker .. 5

Set-up for Client .. 6

Set-up for Inductive Ignition .. 7

Conclusion ...11

Reflecting Troubleshooting: ..11

Video Result: ...12

Works Cited ...12

Appendix A: ...14

Appendix B: ...17

Appendix C: ...18

pg. 3

Abstract

 The objective of this report is to demonstrate the interfacing application of an Internet of

Things (IoT) device in conjunction with the Ignition software platform. By using the Arduino

Nano 33 IoT as the primary hardware and the MQTT protocol for data transmission, the

connection between the Arduino to Ignition was a success in order to enable real-time data

visualization and interaction. The report details the selection of the hardware, the setup process

for both hardware and Ignition, and the integration using MQTT. Additionally, a key focus of

this work was the use of data binding in Ignition, enabling the dynamic manipulation of

components based on incoming data from the Arduino device. While the project phase did not

include the capability to send control signals from Ignition to the Arduino, it formed the basis for

future exploration into such advanced IoT applications. This report will be of significant value to

individuals or organizations seeking to understand and implement their own IoT projects for

simple fast data collection and interpretation.

Introduction

 In this report, we aim to delve deep into the intricacies of the Internet of Things (IoT) by

exploring its interface with Inductive Automation's Ignition. Ignition is a powerful industrial

application platform with a feature set built around the demands of modern industrial processes,

and it provides a crucial link between IoT devices and the broader data management ecosystem.

Our objective is to broaden our understanding of various client types, or 'things', that can

connect via a broker and relay data to a dashboard. This foundation will lay the groundwork for

us to further our exploration into big data collection and the intriguing world of digital twins.

However, before we venture into these advanced realms, it is imperative to master the

basics. Hence, this report will detail the selection of devices we used and illustrate the process by

which we successfully managed to interface these devices with Ignition. By enhancing our

understanding of these fundamental connections, we can pave the way for more complex and

expansive IoT applications in the future.

pg. 4

Flow Diagram

Figure 1: This flow diagram illustrates the communication process between an Arduino device

and the Ignition software platform using the MQTT (Message Queuing Telemetry Transport)

protocol.

The aim of this project is to transmit data through the Arduino Nano33Iot using MQTT

Engine, a specific module within Ignition, thereby enabling Ignition to perform specific tasks

with this data. This process involves setting up a parameter, which necessitates some coding that

we will elaborate on later in this report, to define and publish topics. The MQTT broker retains

the most recently published data, making it available for any client to subscribe to. Subscription,

in this context, equates to data acquisition. In our particular scenario, the client Ignition is

subscribing to, or obtaining the data.

Here is a logistic of the flow diagram:

1. Arduino Device:

● Collects data from various sensors or inputs.

● Processes and prepares the data for transmission.

● Establishes a connection with the MQTT Broker.

● Publishes the data to specific MQTT topics on the Broker.

2. MQTT Broker:

● Serves as a central messaging hub for the MQTT protocol.

pg. 5

● Receives published data from the Arduino.

● Stores the data temporarily until it is delivered to subscribers.

● Manages subscriptions to different MQTT topics.

3. Ignition Software Platform:

● Establishes a connection with the MQTT Broker.

● Subscribes to specific MQTT topics on the Broker.

● Receives data from the Broker when published by the Arduino.

● Processes and utilizes the received data within Ignition.

Clients and Broker

 Selecting the appropriate hardware can be a challenging task due to the myriad of options

available. The primary factor to consider is whether the hardware possesses WiFi capability, as

this is often indicative of its suitability for our needs. We required a simple yet effective device

capable of handling three buttons, three LED lights, and a time tracker for generating numbers.

Our initial choice was the Arduino Uno, due to its immediate availability. However, the need for

an additional module hardware, WiFi connectivity, presented a complication. After further

investigation, we settled on the Arduino Nano 33 Iot. See figure 2, a Microcomputer that was

chosen. A detailed comparison of different boards can be found in Appendix A.

As for identifying a suitable broker for our project presented its own set of challenges.

Initially, we attempted to establish a local broker on a desktop using Mosquitto. However, this

solution fell short of our needs because the broker would stop functioning when the desktop was

powered off. It's worth mentioning that running a dedicated server using Raspberry Pi is a

possible solution. While we won't get into the specifics of that option in this report, a wealth of

information on setting up a Raspberry Pi as a dedicated MQTT broker server is readily available

online. Ultimately, due to our need for a continually available server and without needing a

dedicated server, we opted for the MQTT Engine Module provided by Inductive Automation.

We have included a thorough comparison of various MQTT brokers in Appendix B for those

seeking additional insight into potential options.

pg. 6

Figure 2: Arduino Nano33IoT

Set-up for Client

 As we've previously discussed, we chose to use the Arduino Nano 33 IoT for our project.

While we won't delve into the granular details of the hardware and coding, we'll outline the used

pins, the purpose of our code, and its key elements. The complete code can be found in Appendix

C.

First, it's crucial to note that the libraries for WiFiNINA and ArduinoMqttClient need to

be installed, as we've utilized their syntax in our code (see Figure 3, Lines 1 & 2). Lines 4 & 5

establish the WiFi connectivity. Here, 'SSID' represents your WiFi name, and 'password' stands

for your corresponding WiFi password. Please remember to retain the quotation marks as they

denote the text as a string. Line 9 identifies the IP address of the broker (refer to Appendix B for

free server options) and Line 10 specifies the MQTT port.

Our choice of data or 'Topics' to be sent to the broker can be seen in Lines 13 to 17 of our

code. These topics include status data for when the Green, Red, or Yellow buttons are clicked,

and some additional variables like 'room 1' and 'room 2', which are included for practice. The

topics are sent as random numbers, for simplicity's sake, within a specified range. The naming

scheme 'Arduino/(topic)' is designed to maintain organization: the prefix 'Arduino/' can be

considered a folder on the dashboard, enabling any client to subscribe to all 'Arduino/' topics by

pg. 7

subscribing to 'Arduino/#'. The '#' symbol acts as a wildcard. We will elaborate more on this in

the Inductive setup section.

For the hardware setup, please refer to Figure 2. We've assigned Pins 2, 3, and 4 on the

Arduino Nano 33 IoT to use buttons to control the Green, Yellow, and Red LEDs respectively.

These LEDs are connected to Pins 5, 6, and 7. To regulate the current and protect the LEDs,

we've incorporated a 100-ohm resistor in series with each LED, connected to the positive side

(anode) of the LEDs.

Figure 3: Displaying 17 lines of code to show the important ones. Library for Wifinina can

be found, https://www.arduino.cc/reference/en/libraries/wifinina/ and ArduinoMqttClent

https://www.arduino.cc/reference/en/libraries/arduinomqttclient/

Set-up for Inductive Ignition

 In our project, the dashboard we created simulates real-world events, hence facilitating real-time

data collection. To achieve this, we used specific perspective components and bound data to them. This

setup means components respond only if certain conditions are met, as defined by the received data.

Let's look at Figure 4.1 as an example: here, we dragged and dropped the tag. In Figure 4.2, we

added a label, leaving its name blank, which resulted in a blank square object (an improvised solution due

to the absence of a simple circle). Figure 4.3 showcases styles, essentially variables containing custom

properties. The advantage here is the ability to link these styles to any components. Instead of adjusting

https://www.arduino.cc/reference/en/libraries/wifinina/
https://www.arduino.cc/reference/en/libraries/arduinomqttclient/

pg. 8

each component individually, you can edit all linked components simultaneously via the style variable.

Let's delve deeper into 4.1, 4.2, and 4.3.

Figure 4: Visual Display, essentially a simulation depending on data received.

Figure 5: Servers, the URL should have your broker address, if not then create a new one and add it.

Documentation, see https://docs.chariot.io/display/CLD80/ME%3A+Configuration

1

2

5

4

 Your IP

https://docs.chariot.io/display/CLD80/ME%3A+Configuration

pg. 9

Figure 6: We are subscribing to anything that has arduino/, see figure 4 and notice the folder “arduino”.

So, when subscribing, the first word will essentially be a folder, with that said, plan accordingly.

In Figures 4.1 & 4.2, it's crucial that you set your tags' dropdown to MQTT Engine, ensuring that

the subscribed tags can be identified. To subscribe to topics, the Broker must first be set up. You can do

this from the Ignition homepage > Config > MQTT Engine > Setting. Make sure the Broker's IP address

is connected, as shown in Figure 5. To subscribe to the desired topic, as seen in Figure 6, you'll need to

create a new namespace. Once you've subscribed, visible tags should appear. With these data tags, you

can initiate actions – in our case, we dragged and dropped tags onto the canvas, creating LED displays.

This allowed us to observe the numbers changing every three seconds.

Moving to Figure 4.3, we created labels, as seen in Figure 4.4, which shows that labels were

established and the link icon indicates that the data is bound to a specific component. We exploited this

binding to simulate red, yellow, and green lights reflecting the state of physical buttons. We then

animated this simulation by creating styles and binding them to style classes in the perspective property.

To create a style, refer to Figure 7.1, and name it as shown in Figure 7.2. You can change the

background color as seen in Figure 7.3. To create a spectrum of colors, select 7.3.1 for one call and select

7.3.2 to animate the other call. Importantly, Figure 7.4 allows for the creation of transitions from selected

properties at 0% to 100% as shown 7.3.1 & 7.3.2, so be sure to enable it. Once the style is created, bind it

to a tag by selecting a component and clicking on the link symbol within the Property Editor (Figure 8.1).

In Figure 8.2, select the tag you want to bind, remember to select its value because we want the

component to read this tag’s value.

pg. 10

Figure 7: Process of creating a style.

Figure 8: Process of binding style and tag

Finally, for Figure 8.3, we also bind the style created in Figure 7. Initialize the binding by

selecting transform and creating two lines (not shown here as it has already been done). The component is

then programmed to respond when the input reads '1', activating the style 'LED Green' properties to match

accordingly. When the input reads '0', it reverts to the default, which is blank.

This demonstration shows the power of binding, specifically how we utilized the inputs of the

button in its on/off states. The potential applications are as limitless as your imagination.

1

2

3

4

3.1 3.2

1

2

3

pg. 11

Conclusion

 In conclusion, the project provided a foundational understanding of the communication

between the Arduino Nano 33 IoT device and Ignition using MQTT. Our successful

implementation showcased the seamless integration of hardware, the MQTT protocol, and

Ignition's powerful features for visualizing and managing real-time data. We were able to

subscribe to data topics from the Arduino device, binding this incoming data to manipulate

components on the Ignition platform dynamically. Although this phase of the project did not

encompass two-way communication, enabling control signals to be sent from Ignition to the

Arduino, our investigation lays the groundwork for this next step. We now have a clear path

towards expanding our knowledge and exploring more complex IoT applications, including two-

way control and the creation of digital twins.

Reflecting Troubleshooting:

Previously, it was discussed briefly on how to get the MQTT broker to work. However,

the troubles that weren’t discussed was the process of setting up a dedicated MQTT broker

server and validating topic publication through a third-party MQTT client. The approach varied

depending on the board used, which included esp-8266, esp-32 CAM, Arduino MKR-1000, and

Arduino Nano. In short, the key to these variations was understanding the specific libraries each

board utilized.

Our initial goal was to establish a two-way read/write communication system, but

unfortunately, we were not successful. Consequently, we resorted to implementing a one-way

system from Arduino to Ignition. Initially, we aimed to control a 6 Degree of Freedom (DoF)

Robot. However, due to time constraints and the difficulties faced in establishing a two-way

system, we decided to realign our objectives. We focused on understanding and mastering the

basics first, thus our project pivoted to facilitate one-way communication from Arduino to

Ignition. This experience opened the possibility of future work, particularly in resolving the two-

way communication challenge and progressing towards controlling complex systems such as the

6 DoF Robot.

In terms of coding, we encountered some problems. Specifically, the button didn't

respond as expected. We had a setup where a random number generator would send data at fixed

intervals, but integrating this with the button proved problematic. Our original code required a

pg. 12

button press before generating random numbers, which was not ideal. To rectify this, we

introduced a time condition. This modification helped keep track of time and allowed the code to

complete loops independently of the button presses, improving the response time and overall

performance of the system.

Video Result:

Click to See video

direct link, viewable for anyone with link:

https://drive.google.com/file/d/1szn3ANM0jmxxK6ekGCEb2YeEcTonzLB7/view?usp=share_link

Works Cited

“ArduinoMqttClient.” Arduino,

https://reference.arduino.cc/reference/en/libraries/arduinomqttclient/. Accessed May

2023.

“Arduino Tutorial 28: Using a Pushbutton as a Toggle Switch.” YouTube, Paul

McWhorter, 17 September 2019, https://www.youtube.com/watch?v=aMato4olzi8.

Accessed May 2023.

Davenport, Nathan. “MQTT Engine - MQTT Modules for Ignition 8.x - Confluence.”

Cirrus Link Documentation, 15 September 2021,

https://docs.chariot.io/display/CLD80/MQTT+Engine. Accessed 19 May 2023.

“Inductive University.” ″ - Wiktionary,

https://www.inductiveuniversity.com/courses/ignition/perspective-components-and-

bindings/8.1. Accessed 19 May 2023.

Richetta, Andrea. “Nano 33 IoT.” Arduino, https://docs.arduino.cc/hardware/nano-33-iot.

Accessed May 2023.

https://drive.google.com/file/d/1szn3ANM0jmxxK6ekGCEb2YeEcTonzLB7/view?usp=share_link
https://drive.google.com/file/d/1szn3ANM0jmxxK6ekGCEb2YeEcTonzLB7/view?usp=share_link

pg. 13

“WiFiNINA.” Arduino, https://www.arduino.cc/reference/en/libraries/wifinina/.

Accessed May 2023.

pg. 14

Appendix A:

Board Advantages Disadvantages Application # of ADC

pins

Arduino

Nano 33 IoT
● Compact form

factor, similar to the

original Arduino

Nano.

● Easy to use with

Arduino IDE and

extensive

community support.

● Built-in WiFi and

Bluetooth for IoT

applications.

● 3-axis

accelerometer and

3-axis gyroscope.

● 3.3V I/O pins.

● Lower power

consumption,

suitable for battery-

powered projects.

● Compact form

factor, similar to the

original Arduino

Nano.

● Easy to use with

Arduino IDE and

extensive

community support.

● Built-in WiFi and

Bluetooth for IoT

applications.

● 3-axis

accelerometer and

3-axis gyroscope.

● 3.3V I/O pins.

● Lower power

consumption,

suitable for battery-

powered projects.

● Compact form

factor, similar to

the original

Arduino Nano.

● Easy to use with

Arduino IDE and

extensive

community

support.

● Built-in WiFi and

Bluetooth for IoT

applications.

● 3-axis

accelerometer and

3-axis gyroscope.

● 3.3V I/O pins.

● Lower power

consumption,

suitable for

battery-powered

projects.

●

● 8

ESP8266

NodeMCU

(V1, V2,

V3)

● Low cost

● Easy to use with

Arduino IDE

● Built-in WiFi

● Limited GPIOs

● Less processing

power

● Limited RAM and

Flash memory

● No Bluetooth

● IoT devices

● Home automation

● Remote sensors

● Web servers

1

ESP32

DevKitC

(V1, V2,

V3)

● More GPIOs than

ESP8266

● Dual-core processor

● Built-in WiFi and

Bluetooth

● More RAM and

Flash memory

● Easy to use with

Arduino IDE

● Slightly higher cost

● Higher power

consumption

● IoT devices

● Home automation

● Robotics

● Wearable devices

● Drones

18

ESP32

WROVER
● Dual-core processor

● Built-in WiFi and

Bluetooth

● Higher cost than

ESP32 DevKitC

● IoT devices with

high data

processing

18

pg. 15

● More RAM and

Flash memory

● Easy to use with

Arduino IDE

● Camera interface,

SD card support

● Additional PSRAM

● Advanced home

automation

● Machine learning

projects

● Image processing

ESP32-

CAM
● Compact form

factor

● Built-in camera

module

● Built-in WiFi

● Low cost

● SD card support

● Limited GPIOs

● No USB interface

● Requires external

programmer

● Surveillance

cameras

● Face recognition

● Object tracking

● Robotics

● Drones

1 (Not

exposed

on the

board,

accessible

through

the pin

header)

Arduino

Uno

● Easy to use with

Arduino IDE

● Large community

and libraries

● Robust 5V I/O pins

● Limited GPIOs

● No built-in WiFi or

Bluetooth

● Limited RAM and

Flash memory

● Less processing

power

● Education

● Hobbyist projects

● Prototyping

● Simple robotics

6

Arduino

MKR1000
● Built-in WiFi

● Easy to use with

Arduino IDE

● More RAM and

Flash memory than

Uno

● Low power

consumption

● Large community

and libraries

● Higher cost than

Arduino Uno

● Limited GPIOs

● 3.3V I/O pins

● IoT devices

● Home automation

● Remote sensors

● Battery-powered

devices

● Wireless

communication

7

· References:

o ESP8266 NodeMCU:

Official GitHub Repository: https://github.com/nodemcu/nodemcu-devkit

ESP8266 Datasheet: https://www.espressif.com/sites/default/files/documentation/0a-

esp8266ex_datasheet_en.pdf

o ESP32 DevKitC:

Official Espressif Documentation: https://docs.espressif.com/projects/esp-

idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html

https://github.com/nodemcu/nodemcu-devkit
https://github.com/nodemcu/nodemcu-devkit
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html

pg. 16

 ESP32 Datasheet:

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

o ESP32 WROVER:

Official Espressif Documentation: https://docs.espressif.com/projects/esp-

idf/en/latest/esp32/hw-reference/modules-and-boards.html#esp32-wrover-module

 ESP32 WROVER Datasheet:

https://www.espressif.com/sites/default/files/documentation/esp32-

wrover_datasheet_en.pdf

o ESP32-CAM:

 ESP32-CAM AI-Thinker Datasheet: https://www.ai-

thinker.com/uploads/file/191112193120-0/ESP32-CAMProductSpecification.pdf

o Arduino Uno:

Official Arduino Website: https://store.arduino.cc/usa/arduino-uno-rev3

ATmega328P Datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-

168A-PA-328-P-DS-DS40002061A.pdf

o Arduino MKR1000:

 Official Arduino Website: https://store.arduino.cc/usa/arduino-mkr1000-wifi

SAMD21 Datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_Data

Sheet_DS40001882F.pdf

ATWINC1500 Datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42420-WINC1500-Low-

Power-2.4GHz-IEEE-802.11-b-g-n-IoT-Network-Controller_Datasheet.pdf

o Arduino Nano 33 IoT

Main Page: https://docs.arduino.cc/hardware/nano-33-

iot?queryID=9d81d5fbd484e4c5018dc8ff78d60dec&_gl=1*lrjgnd*_ga*MjM1MDg3

NjAyLjE2ODA2NjA1NjE.*_ga_NEXN8H46L5*MTY4NDM3NzAzNy4xNS4xLjE

2ODQzNzcxNjAuMC4wLjA.

Technical Spec:

https://docs.arduino.cc/static/97dd3221a167cace69dcd032870e0d57/ABX00027-

datasheet.pdf

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/modules-and-boards.html#esp32-wrover-module
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/modules-and-boards.html#esp32-wrover-module
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/modules-and-boards.html#esp32-wrover-module
https://www.espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://www.ai-thinker.com/uploads/file/191112193120-0/ESP32-CAMProductSpecification.pdf
https://www.ai-thinker.com/uploads/file/191112193120-0/ESP32-CAMProductSpecification.pdf
https://www.ai-thinker.com/uploads/file/191112193120-0/ESP32-CAMProductSpecification.pdf
https://store.arduino.cc/usa/arduino-uno-rev3
https://store.arduino.cc/usa/arduino-uno-rev3
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://store.arduino.cc/usa/arduino-mkr1000-wifi
https://store.arduino.cc/usa/arduino-mkr1000-wifi
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42420-WINC1500-Low-Power-2.4GHz-IEEE-802.11-b-g-n-IoT-Network-Controller_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42420-WINC1500-Low-Power-2.4GHz-IEEE-802.11-b-g-n-IoT-Network-Controller_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42420-WINC1500-Low-Power-2.4GHz-IEEE-802.11-b-g-n-IoT-Network-Controller_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42420-WINC1500-Low-Power-2.4GHz-IEEE-802.11-b-g-n-IoT-Network-Controller_Datasheet.pdf
https://docs.arduino.cc/hardware/nano-33-iot?queryID=9d81d5fbd484e4c5018dc8ff78d60dec&_gl=1*lrjgnd*_ga*MjM1MDg3NjAyLjE2ODA2NjA1NjE.*_ga_NEXN8H46L5*MTY4NDM3NzAzNy4xNS4xLjE2ODQzNzcxNjAuMC4wLjA
https://docs.arduino.cc/hardware/nano-33-iot?queryID=9d81d5fbd484e4c5018dc8ff78d60dec&_gl=1*lrjgnd*_ga*MjM1MDg3NjAyLjE2ODA2NjA1NjE.*_ga_NEXN8H46L5*MTY4NDM3NzAzNy4xNS4xLjE2ODQzNzcxNjAuMC4wLjA
https://docs.arduino.cc/hardware/nano-33-iot?queryID=9d81d5fbd484e4c5018dc8ff78d60dec&_gl=1*lrjgnd*_ga*MjM1MDg3NjAyLjE2ODA2NjA1NjE.*_ga_NEXN8H46L5*MTY4NDM3NzAzNy4xNS4xLjE2ODQzNzcxNjAuMC4wLjA
https://docs.arduino.cc/hardware/nano-33-iot?queryID=9d81d5fbd484e4c5018dc8ff78d60dec&_gl=1*lrjgnd*_ga*MjM1MDg3NjAyLjE2ODA2NjA1NjE.*_ga_NEXN8H46L5*MTY4NDM3NzAzNy4xNS4xLjE2ODQzNzcxNjAuMC4wLjA
https://docs.arduino.cc/hardware/nano-33-iot?queryID=9d81d5fbd484e4c5018dc8ff78d60dec&_gl=1*lrjgnd*_ga*MjM1MDg3NjAyLjE2ODA2NjA1NjE.*_ga_NEXN8H46L5*MTY4NDM3NzAzNy4xNS4xLjE2ODQzNzcxNjAuMC4wLjA
https://docs.arduino.cc/static/97dd3221a167cace69dcd032870e0d57/ABX00027-datasheet.pdf
https://docs.arduino.cc/static/97dd3221a167cace69dcd032870e0d57/ABX00027-datasheet.pdf
https://docs.arduino.cc/static/97dd3221a167cace69dcd032870e0d57/ABX00027-datasheet.pdf
https://docs.arduino.cc/static/97dd3221a167cace69dcd032870e0d57/ABX00027-datasheet.pdf

pg. 17

Appendix B:

MQTT Broker Advantages Disadvantages Applications

Mosquitto ● Open-source and free

● Lightweight

● Easy to set up and configure

● Supports MQTT v3.1 and v3.1.1

(with limited support for MQTT

v5)

● Limited features

compared to other

brokers

● No built-in web

interface for

management

● Hobbyist projects

● Small-scale

deployments

● Resource-

constrained devices

(e.g., Raspberry Pi)

HiveMQ

(Community

Edition)

● Hobbyist projects

● Small-scale deployments

● Resource-constrained devices

(e.g., Raspberry Pi)

● Requires more

resources than

Mosquitto

● No built-in web

interface for

management

● Small to medium-

scale deployments

● IoT applications

requiring advanced

features and

scalability

HiveMQ

(Enterprise

Edition)

● Advanced security features

● Web-based user interface for

monitoring and management

● Plugin system for extending

functionality

● Commercial support available

● Commercial

product with

associated costs

● Requires more

resources than

Mosquitto

● Large-scale or

enterprise

deployments

● IoT applications

requiring high

reliability,

scalability, and

security

AWS IoT Core ● Managed cloud service

● High scalability and reliability

● Integration with other AWS

services

● Supports MQTT v3.1.1, as well as

WebSocket connections

● Advanced security features

● Pay-as-you-go

pricing model

● Requires an

internet connection

for clients to

connect

● Learning curve to

set up and manage

● IoT applications in

cloud environments

● Integrations with

AWS services

● Large-scale or

enterprise

deployments

Trying to find a public server where you don’t need to set up an account? Here are a few public brokers,

thanks to Professor Adrian Sita who mentioned a couple. Disclaimer: these public brokers are intended

for development and testing. For production use, it's recommended to set up your own MQTT broker or

use a managed service from a cloud provider:

▪ Mosquitto Test Server

● Host: test.mosquitto.org

● Ports: 1883 (unsecured), 8883 (TLS)

▪ HiveMQ Public Broker

● Host: broker.hivemq.com

● Port: 1883

▪ EMQ X Public Broker

pg. 18

● Host: broker.emqx.io

● Port: 1883

▪ Eclipse IoT MQTT Sandbox

● Host: iot.eclipse.org

● Ports: 1883 (unsecured), 8883 (TLS)

Appendix C:

#include <WiFiNINA.h>

#include <ArduinoMqttClient.h>

// network credentials

const char* ssid = "XXXXXXXXX";

const char* password = "XXXXXXXXX";

// MQTT server IP address

const char* mqttServer = "XXXXXXXXX";

int mqttPort = 1883;

// Set your desired MQTT topics

const char* mqttRandomTopic1 = "arduino/room1";

const char* mqttRandomTopic2 = "arduino/room2";

const char* mqttButtonTopicG = "arduino/buttonGreen";

const char* mqttButtonTopicR = "arduino/buttonRed";

const char* mqttButtonTopicY = "arduino/buttonYellow";

// Set up the MQTT client

WiFiClient net;

MqttClient mqttClient(net);

// Set up the button and LED pins variables for Green

const int buttonPinG = 2; // Button connected to pin 2

const int ledPinG = 5;

int buttonStateG = 0;

int lastButtonStateG = 1;

int ledStateG = 0;

// Set up the button and LED pins variables for Yellow

const int buttonPinY = 3; // Button connected to pin 3

const int ledPinY = 6;

pg. 19

int buttonStateY = 0;

int lastButtonStateY = 1;

int ledStateY = 0;

// Set up the button and LED pins variables for Red

const int buttonPinR = 4; // Button connected to pin 4

const int ledPinR = 7;

int buttonStateR = 0;

int lastButtonStateR = 1;

int ledStateR = 0;

// delay time for LED, this allow button to "bounce" and ignore the noise when pressing, see line 98

int dt = 50;

void setup() {

 Serial.begin(9600);

 while (!Serial);

 connectToWiFi();

 connectToMqttServer();

//Green

 pinMode(buttonPinG, INPUT_PULLUP); // Set the button pin as input with internal pull-up resistor

 pinMode(ledPinG, OUTPUT); // Set the Green LED pin as output

//Yellow

 pinMode(buttonPinY, INPUT_PULLUP); // Set the button pin as input with internal pull-up resistor

 pinMode(ledPinY, OUTPUT); // Set the Yellow LED pin as output

//Red

 pinMode(buttonPinR, INPUT_PULLUP); // Set the button pin as input with internal pull-up resistor

 pinMode(ledPinR, OUTPUT); // Set the Red LED pin as output

}

// Initialize a variable to store the last time random numbers were generated

unsigned long lastRandomNumberGenerationTime = 0;

// Set the desired random number generation interval (3 seconds)

unsigned long randomNumberGenerationInterval = 3000;

void loop() {

 mqttClient.poll();

pg. 20

 if (!mqttClient.connected()) {

 connectToMqttServer();

 }

//GreeN

 // Read the state of the button for Green

 buttonStateG = digitalRead(buttonPinG);

 // If the button state has changed and it's HIGH (released), toggle the Green LED

 if (lastButtonStateG == 0 && buttonStateG == 1) {

 if (ledStateG == 0) {

 digitalWrite(ledPinG, HIGH);

 ledStateG = 1;

 }

 else {

 digitalWrite(ledPinG, LOW);

 ledStateG = 0;

 }

 mqttClient.beginMessage(mqttButtonTopicG);

 mqttClient.print(ledStateG);

 mqttClient.endMessage();

 Serial.println("Button pressed, Green LED state toggled!");

 }

 lastButtonStateG = buttonStateG;

 delay(dt);

//Yellow

 // Read the state of the button for Yellow

 buttonStateY = digitalRead(buttonPinY);

 // If the button state has changed and it's HIGH (released), toggle the Yellow LED

 if (lastButtonStateY == 0 && buttonStateY == 1) {

 if (ledStateY == 0) {

 digitalWrite(ledPinY, HIGH);

 ledStateY = 1;

 }

 else {

pg. 21

 digitalWrite(ledPinY, LOW);

 ledStateY = 0;

 }

 mqttClient.beginMessage(mqttButtonTopicY);

 mqttClient.print(ledStateY);

 mqttClient.endMessage();

 Serial.println("Button pressed, Yellow LED state toggled!");

 }

 lastButtonStateY = buttonStateY;

 delay(dt);

//Red

 // Read the state of the button for Red

 buttonStateR = digitalRead(buttonPinR);

 // If the button state has changed and it's HIGH (released), toggle the Red LED

 if (lastButtonStateR == 0 && buttonStateR == 1) {

 if (ledStateR == 0) {

 digitalWrite(ledPinR, HIGH);

 ledStateR = 1;

 }

 else {

 digitalWrite(ledPinR, LOW);

 ledStateR = 0;

 }

 mqttClient.beginMessage(mqttButtonTopicR);

 mqttClient.print(ledStateR);

 mqttClient.endMessage();

 Serial.println("Button pressed, Red LED state toggled!");

 }

 lastButtonStateR = buttonStateR;

 delay(dt);

 // Check if it's time to generate random numbers

pg. 22

 // This is important so when we pressed the button, we don't have to wait for numbers to be generated first

before LED light to turn on

 unsigned long currentTime = millis();

 if (currentTime - lastRandomNumberGenerationTime >= randomNumberGenerationInterval) {

 // Generate random numbers and publish to the MQTT topics

 int randomNumber1 = random(2, 9);

 mqttClient.beginMessage(mqttRandomTopic1);

 mqttClient.print(randomNumber1);

 mqttClient.endMessage();

 // Print the published random number 1 to the Serial Monitor

 // This is to debug to make sure we are publishing

 Serial.print("Published room number 1: ");

 Serial.println(randomNumber1);

 int randomNumber2 = random(6, 21);

 mqttClient.beginMessage(mqttRandomTopic2);

 mqttClient.print(randomNumber2);

 mqttClient.endMessage();

 // Print the published random number 2 to the Serial Monitor

 // This is to debug to make sure we are publishing

 Serial.print("Published room number 2: ");

 Serial.println(randomNumber2);

 // Update the last random number generation time

 lastRandomNumberGenerationTime = currentTime;

 }

}

// Connect to WiFi

void connectToWiFi() {

 Serial.print("Attempting to connect to WiFi...");

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

pg. 23

 }

 // This is to debug to ensure connection to WiFi

 Serial.println("Connected to WiFi!");

}

// Connect to MQTT Broker

void connectToMqttServer() {

 Serial.print("Attempting to connect to MQTT server...");

 mqttClient.setId("ArduinoNano33IoT");

 while (!mqttClient.connect(mqttServer, mqttPort)) {

 delay(500);

 Serial.print(".");

 }

 // This is to debug to ensure connection to MQTT Broker

 Serial.println("Connected to MQTT server!");

}

