
pg. 1

“PotRobotic 6 DoF”

California State University, Northridge

Department of Manufacturing Systems Engineering and Management

MSE 611 – Robotic & Automation

Submission Date:

May 19, 2023

Professor:

 Adrian Sita

By:

Daniel Diaz

pg. 2

Contents
Abstract: ... 3

Introduction: .. 3

Objectives:.. 3

Building the Arm:.. 3

Set-up for Board: ... 5

Set-up for Programming and wiring: .. 5

Reflecting Troubleshooting: ... 9

Conclusion: .. 11

Result Video: .. 11

Works Cited ... 11

Appendix A: ... 12

Appendix B: ... 16

Appendix C: ... 18

Appendix D: ... 19

Appendix E: ... 19

Appendix F: ... 20

Appendix G: ... 21

pg. 3

Abstract:

 This document encapsulates a series of discussions and revisions focused on a 6 Degrees

of Freedom (DoF) robot project. Various challenges associated with servo motor control, coding

adjustments, power supply issues, and communication breakdowns were addressed. It also

touches on the failed attempt to integrate an HC-SR04 sensor due to either a power draw or

electrical issue. In spite of difficulties, progress was made in terms of managing potentiometer

readings, debugging I2C communication, and the ultimate creation of a functional robot

controlled by a slider potentiometer.

Introduction:

 This research paper chronicles the process of designing and building a six-degrees-of-

freedom (6 DoF) robot. The project draws upon knowledge acquired throughout a robotics

course and presents a practical implementation of the same. The key challenge was to transition

the control of the robot from a potentiometer to an inductive automation system, while also

incorporating essential safety measures. The journey encountered various hurdles, and the

learning gained from addressing these obstacles forms the crux of the ensuing discussions.

Objectives:

The primary objective was to construct a robot with 6 DoF and control its movements

initially via a potentiometer. The long-term vision was to achieve control through inductive

automation, a considerably challenging endeavor. A critical aspect of the project was the safety

system, consisting of an HC-SR04 sensor and a set of three LED lights: green, orange, and red,

symbolizing safe, cautionary, and high-risk zones, respectively. The robot's design was such that

it would stop on encountering a red signal, further emphasizing the priority placed on safety.

Building the Arm:

 The first step in our project involves determining the types of arms or links that will be

actuated by the motor, a process that requires careful consideration of their intended positions.

pg. 4

As such, it is advisable to plan the robot's orientation in advance, which will aid in establishing

the optimal setup for the servos.

I used an unassembled kit featuring the aluminum brackets and MG966R servos.

Navigating through the assembly process provided a valuable learning experience, highlighting

the importance of identifying the servos' zero positions prior to installation. A comprehensive

guide for determining whether the servo is sweeping correctly can be found in Appendix D.

To initialize the setup, start with securing the base to a fixed ground and zeroing the

servo's position. This zeroing process can be achieved through a purchased servo tester or by

writing your own code (see Appendix for details). Once the zero position is set, the servo

effectively becomes a 'joint'.

Subsequently, a link is attached to the joint. This procedure is repeated until all desired

joints are assembled. This systematic approach ensures an efficient and effective setup for the

robotic system.

Figure 1: 6 DoF, Assembled Robot Figure 2: Robotic Diagram, 6 DoF, didn’t

place frame of reference on gripper.

A

B

C

D

E

F

pg. 5

Set-up for Board:

 Our initial choice for the project was the Arduino Uno due to its functionality and

availability. However, I’ve encountered unforeseen issues that necessitated an alternative choice.

I’ve considered the MKR-1000, but ultimately, its number of pins was insufficient for our

project's needs.

As a result, I’ve shifted our attention to the Arduino Nano 33 IoT, a decision driven

largely by its WiFi capability. This feature aligned with our goal of incorporating wireless

control into the robot's operation. While I might not have achieved complete wireless control

within our project's timeframe, it remains a promising avenue for future development.

It's important to bear in mind, however, that the Arduino Nano 33 IoT operates at 3.3V.

This may cause compatibility issues with certain sensors that require a 5V operation. Therefore,

it's critical to ensure that any sensors used in the project can function at this voltage level.

I’ve also incorporated a supplementary PCA9685 board to optimize our 6 DoF robot's

performance. This board, communicating over the I2C bus, allows for the precise control of up to

16 servos with just two pins, thus preserving the Arduino Nano 33 IoT's GPIO pins for other

tasks. The PCA9685 also handles PWM generation, freeing up the Arduino's processing power

for more complex tasks.

One of the crucial features of the PCA9685 board is its use of capacitors for decoupling

the power supply. This helps to filter out any noise that could disrupt the control signals to the

servo motors, providing a more stable power supply. This in turn helps mitigate servo jittering,

enhancing their overall responsiveness.

Set-up for Programming and wiring:

 I’ve been inspired from a Youtuber, Scott Fitzgerald, and will be using some codes that

already existed. I have, however, adapted and improved it to suit the needs of my project. One

particular adjustment involved smoothing the readings from the potentiometer while the robot

was idling. This is where I sought assistance from ChatGPT, which provided the appropriate

code.

It's important to note that the Arduino Nano operates at 3.3V, a factor which required

consideration during the code modification process (refer to fig 4 line 64). The adjustments are

pg. 6

illustrated in fig 3 lines 10-14 and fig 4 lines 52-64, which outline the utilization of a filter to

smooth and average the readings.

Figure 3: First few lines, important to install the libraries first before running the code.

pg. 7

Figure 4: Line 52, 55, 58, 61, 64 modified, and edited 64 to compensate for 3.3V of nano

Figure 5: Schematic Wiring

pg. 8

 Turning to the wiring phase, refer to figure 5 for a depiction of the setup I used. A critical

point to remember when wiring the slider potentiometer is to correctly identify the ground,

power, and signal connections as shown in figure 6. Lesson learned through this process of trial

and error, which included a few painful lessons such as a hot potentiometer causing a slight burn.

Be cautious and attentive to avoid such incidents.

Lastly, pay careful attention to the labeling of A, B, C, D, E, F for the Servos and

Potentiometer in the diagrams. This labeling scheme is crucial for correctly setting up your robot

and following along the code in appendix A. Also, see figure 7, to get an idea of how the final

potentiometer would be set up. As shown, it would make sense to keep track of which is which.

When in doubt, feel free to use tape tags for labeling.

Figure 6: SLIDE POT 10K OHM 0.1W TOP 20MM

pg. 9

Figure 7: Potentiometer set up in order of the Joints, from left to right,

Reflecting Troubleshooting:

 The construction phase of the project started with a critical step: setting the servo to zero.

This step ensures that upon completion of the build, the robot moves in the right directions and

avoids unnecessary complications (refer to appendices C & D for more information on coding

considerations).

I encountered an issue with the servos behaving erratically due to insufficient power

supply from the board. To address this, I used a set of 4x AA batteries, which resulted in abrupt

robot movements. Realizing that I needed to reduce the noise, I decided to incorporate capacitors

and purchased a PCA9685 board. This made the robot's movements smoother.

However, when I connected all the servos, the robot began to jitter and shut down. The

solution was to use a 5V5A power supply. A new issue then arose: the robot exhibited erratic

A B C D E F

pg. 10

movements while idling. I observed fluctuations in the potentiometer readings, which led me to

reprogram the code to create a moving average filter. This significantly smoothed the robot's

idling. Another point to consider was that the robot seemed to move every 5 degrees when

adjusting the potentiometer, and moving it too quickly could cause the arm to overshoot.

 The project faced another hurdle when the Arduino Uno stopped communicating with the

PCA9685 board. After isolating each servo and verifying their functionality (see appendix C), I

used a multimeter to ensure that voltage was being transmitted properly. I suspected a

communication issue and, after reviewing Arduino's documentation, learned about the

significance of I2C (SDA & SCL pins) for board communication. I worked with Chat GPT to

create a debugging code for an I2C scanner (refer to appendix E for the code). As a result, I

could identify the issue and decided to switch to Arduino Nano 33 IoT, which offers more pins, a

requirement for another project of mine. Figures 8 & 9 provide a snapshot of what the debugging

process looked like.

Figure 7: Utilizing serial monitor, this shows

scanning…. Which means none of the pins (SDA

& SCL) were found.

Figure 8: Utilizing serial monitor, this

shows that the SDA & SCL has been

detected.

 In the initial plan, the HC-SR04 sensor was intended to enhance the safety features of the

robot. While I developed a working standalone code for the HC-SR04 sensor (see Appendix F),

problems arose when I attempted to integrate it into the main robotic control system (see

Appendix G). The issues appeared to be either the HC-SR04 sensor drawing all the power from

the Arduino Nano33IoT or an unidentified electrical issue. After browsing Raspberry Pi

community forum, there were some mentions about the incompatibility, HC-SR04 sensor

requires 5V otherwise it won’t work. With that being said, I’ve taken that information and

deduced that it won’t work with Nano since it operates on 3.3V. Due to time constraints, it

wasn't possible to diagnose and troubleshoot this issue further. Therefore, the decision was made

to focus on establishing a functional robot controlled by a slider potentiometer.

pg. 11

Conclusion:

The journey of this project, from initial conception to eventual implementation, was

riddled with trials and errors, leading to valuable learning experiences. These ranged from erratic

servo behavior and issues with potentiometer readings, to a breakdown in I2C communication.

Every obstacle necessitated a different approach to troubleshooting, such as code modification,

employing an external power supply, and ultimately switching to a different microcontroller. An

unforeseen challenge surfaced when attempting to integrate the HC-SR04 sensor into the main

robotic control system due to a voltage incompatibility between the Arduino and the sensor.

Despite this setback, the project concluded successfully with the creation of a robot controlled by

a slider potentiometer. Future enhancements to this project could include resolving the remaining

issues, refining the existing design, and reintegrating the initially planned safety features. This

project, despite its challenges, served as a testament to the power of perseverance and

adaptability in robotics engineering.

Result Video:

Click on Icon or this link to see video:

For full address:

https://drive.google.com/file/d/1XcbmC8a0eqKUlDSPjq8j2AkhZzUOWI6R/view?usp=share_li

nk

Works Cited

Community, Forum. “Hc sr04 at 3.3v.” Raspberry Pi Forums, 25 October 2015,

https://forums.raspberrypi.com/viewtopic.php?t=124216. Accessed May 2023.

Fitzgerald, Scott. “Using Servo Motors with the Arduino.” DroneBot Workshop, 20 May 2018,

https://dronebotworkshop.com/servo-motors-with-arduino/. Accessed May 2023.

McWhorter, Paul. “Arduino Tutorial 30: Understanding and Using Servos in Projects.” Technology

Tutorials, 1 October 2019, https://toptechboy.com/arduino-tutorial-30-understanding-and-using-

servos-in-projects/. Accessed May 2023.

https://drive.google.com/file/d/1XcbmC8a0eqKUlDSPjq8j2AkhZzUOWI6R/view?usp=share_link
https://drive.google.com/file/d/1XcbmC8a0eqKUlDSPjq8j2AkhZzUOWI6R/view?usp=share_link
https://drive.google.com/file/d/1XcbmC8a0eqKUlDSPjq8j2AkhZzUOWI6R/view?usp=share_link

pg. 12

McWhorter, Paul. “Arduino Tutorial 55: Measuring Distance With HC-SR04 Ultrasonic Sensor.”

Technology Tutorials, 31 March 2020, https://toptechboy.com/arduino-tutorial-55-measuring-

distance-with-hc-sr04-ultrasonic-sensor/. Accessed May 2023.

“PCA9685 16-Channel 12-Bit PWM Servo Motor Driver with Arduino.” YouTube, 27 January 2022,

https://www.youtube.com/watch?v=_DgLt2Inr1E. Accessed May 2023.

Richetta, Andrea. “Nano 33 IoT.” Arduino, https://docs.arduino.cc/hardware/nano-33-iot. Accessed May

2023.

“6DOF Manipulator Assembly Video.” YouTube, 15 December 2021,

https://www.youtube.com/watch?v=hTZ2z_C9dSU. Accessed 19 May 2023.

“Slide Pot 10K OHM 3.1W Top 20MM.” Bourns, 31 March 2015, https://www.bourns.com/docs/Product-

Datasheets/pta.pdf. Accessed 19 May 2023.

Zambetti, Nicholas. “A Guide to Arduino & the I2C Protocol (Two Wire).” Arduino Documentation, 16

May 2023, https://docs.arduino.cc/learn/communication/wire. Accessed May 2023.

Appendix A:

Board Advantages Disadvantages Application # of ADC

pins

ESP8266

NodeMCU

(V1, V2,

V3)

• Low cost
• Easy to use

with Arduino
IDE

• Built-in WiFi

• Limited
GPIOs

• Less
processing
power

• Limited RAM
and Flash
memory

• No Bluetooth

• IoT devices
• Home

automation
• Remote sensors
• Web servers

1

ESP32

DevKitC

(V1, V2,

V3)

• More GPIOs
than ESP8266

• Dual-core
processor

• Built-in WiFi
and Bluetooth

• Slightly
higher cost

• Higher power
consumption

• IoT devices
• Home

automation
• Robotics
• Wearable

devices

18

pg. 13

• More RAM
and Flash
memory

• Easy to use
with Arduino
IDE

• Drones

ESP32

WROVER
• Dual-core

processor
• Built-in WiFi

and Bluetooth
• More RAM

and Flash
memory

• Easy to use
with Arduino
IDE

• Camera
interface, SD
card support

• Additional
PSRAM

• Higher cost
than ESP32
DevKitC

• IoT devices with
high data
processing

• Advanced home
automation

• Machine learning
projects

• Image
processing

18

ESP32-

CAM
• Compact form

factor
• Built-in

camera
module

• Built-in WiFi
• Low cost
• SD card

support

• Limited
GPIOs

• No USB
interface

• Requires
external
programmer

• Surveillance
cameras

• Face recognition
• Object tracking
• Robotics
• Drones

1 (Not

exposed

on the

board,

accessible

through

the pin
header)

Arduino

Uno
• Easy to use

with Arduino
IDE

• Large
community
and libraries

• Robust 5V I/O
pins

• Limited
GPIOs

• No built-in
WiFi or
Bluetooth

• Limited RAM
and Flash
memory

• Less
processing
power

• Education
• Hobbyist

projects
• Prototyping
• Simple robotics

6

Arduino

MKR1000
• Built-in WiFi • Higher cost

than Arduino
Uno

• IoT devices
• Home

automation

7

pg. 14

• Easy to use
with Arduino
IDE

• More RAM
and Flash
memory than
Uno

• Low power
consumption

• Large
community
and libraries

• Limited
GPIOs

• 3.3V I/O pins

• Remote sensors
• Battery-powered

devices
• Wireless

communication

Arduino

Nano 33

IoT

• Compact form
factor, similar
to the original
Arduino
Nano.

• Easy to use
with Arduino
IDE and
extensive
community
support.

• Built-in WiFi
and Bluetooth
for IoT
applications.

• 3-axis
accelerometer
and 3-axis
gyroscope.

• 3.3V I/O pins.
• Lower power

consumption,
suitable for
battery-
powered
projects.

• Compact form
factor, similar
to the original
Arduino
Nano.

• Easy to use
with Arduino
IDE and
extensive
community
support.

• Built-in WiFi
and Bluetooth
for IoT
applications.

• 3-axis
accelerometer
and 3-axis
gyroscope.

• 3.3V I/O pins.
• Lower power

consumption,
suitable for
battery-
powered
projects.

• Compact form
factor, similar to
the original
Arduino Nano.

• Easy to use with
Arduino IDE and
extensive
community
support.

• Built-in WiFi and
Bluetooth for IoT
applications.

• 3-axis
accelerometer
and 3-axis
gyroscope.

• 3.3V I/O pins.
• Lower power

consumption,
suitable for
battery-powered
projects.

8

 References:

o ESP8266 NodeMCU:

Official GitHub Repository: https://github.com/nodemcu/nodemcu-devkit

https://github.com/nodemcu/nodemcu-devkit

pg. 15

ESP8266 Datasheet: https://www.espressif.com/sites/default/files/documentation/0a-

esp8266ex_datasheet_en.pdf

o ESP32 DevKitC:

Official Espressif Documentation: https://docs.espressif.com/projects/esp-

idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html

 ESP32 Datasheet:

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

o ESP32 WROVER:

Official Espressif Documentation: https://docs.espressif.com/projects/esp-

idf/en/latest/esp32/hw-reference/modules-and-boards.html#esp32-wrover-module

 ESP32 WROVER Datasheet:

https://www.espressif.com/sites/default/files/documentation/esp32-

wrover_datasheet_en.pdf

o ESP32-CAM:

 ESP32-CAM AI-Thinker Datasheet: https://www.ai-

thinker.com/uploads/file/191112193120-0/ESP32-CAMProductSpecification.pdf

o Arduino Uno:

Official Arduino Website: https://store.arduino.cc/usa/arduino-uno-rev3

ATmega328P Datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-

168A-PA-328-P-DS-DS40002061A.pdf

o Arduino MKR1000:

 Official Arduino Website: https://store.arduino.cc/usa/arduino-mkr1000-wifi

SAMD21 Datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_Data

Sheet_DS40001882F.pdf

ATWINC1500 Datasheet:

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42420-WINC1500-Low-

Power-2.4GHz-IEEE-802.11-b-g-n-IoT-Network-Controller_Datasheet.pdf

o Arduino Nano 33 IoT

Main Page: https://docs.arduino.cc/hardware/nano-33-

iot?queryID=9d81d5fbd484e4c5018dc8ff78d60dec&_gl=1*lrjgnd*_ga*MjM1MDg3

NjAyLjE2ODA2NjA1NjE.*_ga_NEXN8H46L5*MTY4NDM3NzAzNy4xNS4xLjE

2ODQzNzcxNjAuMC4wLjA.

https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/0a-esp8266ex_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/modules-and-boards.html#esp32-wrover-module
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/modules-and-boards.html#esp32-wrover-module
https://www.espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wrover_datasheet_en.pdf
https://www.ai-thinker.com/uploads/file/191112193120-0/ESP32-CAMProductSpecification.pdf
https://www.ai-thinker.com/uploads/file/191112193120-0/ESP32-CAMProductSpecification.pdf
https://store.arduino.cc/usa/arduino-uno-rev3
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://store.arduino.cc/usa/arduino-mkr1000-wifi
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42420-WINC1500-Low-Power-2.4GHz-IEEE-802.11-b-g-n-IoT-Network-Controller_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42420-WINC1500-Low-Power-2.4GHz-IEEE-802.11-b-g-n-IoT-Network-Controller_Datasheet.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42420-WINC1500-Low-Power-2.4GHz-IEEE-802.11-b-g-n-IoT-Network-Controller_Datasheet.pdf
https://docs.arduino.cc/hardware/nano-33-iot?queryID=9d81d5fbd484e4c5018dc8ff78d60dec&_gl=1*lrjgnd*_ga*MjM1MDg3NjAyLjE2ODA2NjA1NjE.*_ga_NEXN8H46L5*MTY4NDM3NzAzNy4xNS4xLjE2ODQzNzcxNjAuMC4wLjA
https://docs.arduino.cc/hardware/nano-33-iot?queryID=9d81d5fbd484e4c5018dc8ff78d60dec&_gl=1*lrjgnd*_ga*MjM1MDg3NjAyLjE2ODA2NjA1NjE.*_ga_NEXN8H46L5*MTY4NDM3NzAzNy4xNS4xLjE2ODQzNzcxNjAuMC4wLjA
https://docs.arduino.cc/hardware/nano-33-iot?queryID=9d81d5fbd484e4c5018dc8ff78d60dec&_gl=1*lrjgnd*_ga*MjM1MDg3NjAyLjE2ODA2NjA1NjE.*_ga_NEXN8H46L5*MTY4NDM3NzAzNy4xNS4xLjE2ODQzNzcxNjAuMC4wLjA
https://docs.arduino.cc/hardware/nano-33-iot?queryID=9d81d5fbd484e4c5018dc8ff78d60dec&_gl=1*lrjgnd*_ga*MjM1MDg3NjAyLjE2ODA2NjA1NjE.*_ga_NEXN8H46L5*MTY4NDM3NzAzNy4xNS4xLjE2ODQzNzcxNjAuMC4wLjA

pg. 16

Technical Spec:

https://docs.arduino.cc/static/97dd3221a167cace69dcd032870e0d57/ABX00027-

datasheet.pdf

Appendix B:

Program for the Robot

#include <Wire.h>

#include <Adafruit_PWMServoDriver.h>

#define MIN_PULSE_WIDTH 540

#define MAX_PULSE_WIDTH 2350

#define FREQUENCY 50

#define numReadings 5 // Add the missing declaration for numReadings

// Create a structure to store the potentiometer's moving average data

struct PotentiometerData {

 int readings[numReadings];

 int readIndex;

 int total;

 int averagePotVal;

};

Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();

// Define Potentiometer Inputs

int controlA = A0;

int controlB = A1;

int controlC = A2;

int controlD = A3;

int controlE = A6;

int controlF = A7;

// Define Motor Outputs on PCA9685 board

int motorA = 1;

int motorB = 3;

int motorC = 5;

int motorD = 7;

int motorE = 9;

int motorF = 11;

void setup()

{

https://docs.arduino.cc/static/97dd3221a167cace69dcd032870e0d57/ABX00027-datasheet.pdf
https://docs.arduino.cc/static/97dd3221a167cace69dcd032870e0d57/ABX00027-datasheet.pdf
https://docs.arduino.cc/static/97dd3221a167cace69dcd032870e0d57/ABX00027-datasheet.pdf

pg. 17

 Serial.begin(9600);

 pwm.begin();

 pwm.setPWMFreq(FREQUENCY);

}

void moveMotor(int controlIn, int motorOut, PotentiometerData &potData)

{

 int pulse_wide, pulse_width, potVal;

 // Read values from potentiometer

 potVal = analogRead(controlIn);

 // Subtract the old reading and add the new reading

 potData.total = potData.total - potData.readings[potData.readIndex] + potVal;

 // Store the new reading in the array

 potData.readings[potData.readIndex] = potVal;

 // Increment the index, wrapping back to 0 if necessary

 potData.readIndex = (potData.readIndex + 1) % numReadings;

 // Calculate the average of the readings

 potData.averagePotVal = potData.total / numReadings;

 // Convert to 5V range

 potData.averagePotVal = map(potData.averagePotVal, 0, 1023, 0, (1023 * 5) /

3.3);

 // Convert to pulse width

 pulse_wide = map(potData.averagePotVal, 0, 1023, MIN_PULSE_WIDTH,

MAX_PULSE_WIDTH);

 pulse_width = int(float(pulse_wide) / 1000000 * FREQUENCY * 4096);

 // Print potentiometer value and motor position for debugging

 Serial.print("Control ");

 Serial.print(controlIn);

 Serial.print(": ");

 Serial.println(potData.averagePotVal);

 // Control Motor

 pwm.setPWM(motorOut, 0, pulse_width);

}

// Initialize the moving average data for each potentiometer

PotentiometerData potDataA = { {0}, 0, 0, 0};

pg. 18

PotentiometerData potDataB = { {0}, 0, 0, 0};

PotentiometerData potDataC = { {0}, 0, 0, 0};

PotentiometerData potDataD = { {0}, 0, 0, 0};

PotentiometerData potDataE = { {0}, 0, 0, 0};

PotentiometerData potDataF = { {0}, 0, 0, 0};

void loop()

{

 // Control Motor A

 moveMotor(controlA, motorA, potDataA);

 // Control Motor B

 moveMotor(controlB, motorB, potDataB);

 // Control Motor C

 moveMotor(controlC, motorC, potDataC);

 // Control Motor D

 moveMotor(controlD, motorD, potDataD);

 // Control Motor E

 moveMotor(controlE, motorE, potDataE);

 // Control Motor F

 moveMotor(controlF, motorF, potDataF);

 delay(600); // Add a 600 ms delay between each iteration

}

Appendix C:

Code to sweep the servo to make sure it works

#include <Servo.h>

Servo myServo; // create servo object

int pos = 0; // variable to store the servo position

void setup() {

 myServo.attach(9); // attaches the servo on pin 9

}

void loop() {

 for (pos = 0; pos <= 180; pos += 1) { // sweeps from 0 to 180 degrees

 myServo.write(pos); // tell servo to go to position

 delay(15); // waits 15ms for the servo to reach the position

 }

 for (pos = 180; pos >= 0; pos -= 1) { // sweeps from 180 to 0 degrees

 myServo.write(pos); // tell servo to go to position

 delay(15); // waits 15ms for the servo to reach the position

pg. 19

 }

}

Appendix D:

Code to “zero” the position before installing.

#include <Servo.h>

Servo myServo; // create servo object

void setup() {

 myServo.attach(9); // attaches the servo on pin 9

 myServo.write(0); // set the servo to the 0-degree position

}

void loop() {

 // Nothing here. We just want to set the position once in the setup.

}

Appendix E:

I2C Scanner

#include <Wire.h>

void setup()

{

 Wire.begin();

 Serial.begin(9600);

 Serial.println("\nI2C Scanner");

}

void loop()

{

 byte error, address;

 int nDevices;

 Serial.println("Scanning...");

 nDevices = 0;

 for (address = 1; address < 127; address++)

 {

 // The i2c_scanner uses the return value of

 // the Write.endTransmisstion to see if

 // a device did acknowledge to the address.

pg. 20

 Wire.beginTransmission(address);

 error = Wire.endTransmission();

 if (error == 0)

 {

 Serial.print("I2C device found at address 0x");

 if (address < 16)

 Serial.print("0");

 Serial.print(address, HEX);

 Serial.println(" !");

 nDevices++;

 }

 else if (error == 4)

 {

 Serial.print("Unknow error at address 0x");

 if (address < 16)

 Serial.print("0");

 Serial.println(address, HEX);

 }

 }

 if (nDevices == 0)

 Serial.println("No I2C devices found\n");

 else

 Serial.println("done\n");

 delay(5000); // wait 5 seconds for next scan

}

Appendix F:

Program to test HC-SR04

const int buttonPin = 2; // Button pin

const int ledPin = 4; // LED pin

int buttonState = HIGH; // current state of the button

int lastButtonState = HIGH; // previous state of the button

int ledState = LOW; // current state of the LED

void setup() {

 // Set up the pins as inputs and outputs

 pinMode(buttonPin, INPUT_PULLUP);

 pinMode(ledPin, OUTPUT);

 // Start serial communication

pg. 21

 Serial.begin(9600);

}

void loop() {

 // Read the state of the button

 buttonState = digitalRead(buttonPin);

 // If the button state has changed, toggle the LED

 if (buttonState != lastButtonState && buttonState == LOW) {

 ledState = !ledState;

 digitalWrite(ledPin, ledState);

 if (ledState == HIGH) {

 Serial.println("Button pressed - LED ON");

 } else {

 Serial.println("Button pressed - LED OFF");

 }

 }

 // Save the current button state as the last button state

 lastButtonState = buttonState;

 // Wait a bit before checking the button state again

 delay(100);

}

Appendix G:

Programming Robot with Safety, however, could not get the robot to operate.

#include <Wire.h>

#include <Adafruit_PWMServoDriver.h>

// HC-SR04 sensor pins

const int trigPin = 2;

const int echoPin = 3;

// LED pins

const int greenLedPin = 4;

const int yellowLedPin = 5;

const int redLedPin = 6;

// Button pin

const int buttonPin = 7;

// HC-SR04 variables

pg. 22

long duration;

float distance;

// Button state

int buttonState = 0;

// Define safety distances

const int safeDistance = 152; // 5 feet in cm

const int warningDistance = 61; // 2 feet in cm

#define MIN_PULSE_WIDTH 540

#define MAX_PULSE_WIDTH 2350

#define FREQUENCY 50

#define numReadings 5 // Add the missing declaration for numReadings

// Create a structure to store the potentiometer's moving average data

struct PotentiometerData {

 int readings[numReadings];

 int readIndex;

 int total;

 int averagePotVal;

};

Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();

// Define Potentiometer Inputs

int controlA = A0;

int controlB = A1;

int controlC = A2;

int controlD = A3;

int controlE = A6;

int controlF = A7;

// Define Motor Outputs on PCA9685 board

int motorA = 1;

int motorB = 3;

int motorC = 5;

int motorD = 7;

int motorE = 9;

int motorF = 11;

void setup()

{

pg. 23

 pinMode(trigPin, OUTPUT);

 pinMode(echoPin, INPUT);

 pinMode(greenLedPin, OUTPUT);

 pinMode(yellowLedPin, OUTPUT);

 pinMode(redLedPin, OUTPUT);

 pinMode(buttonPin, INPUT_PULLUP);

 Serial.begin(9600);

 pwm.begin();

 pwm.setPWMFreq(FREQUENCY);

}

void moveMotor(int controlIn, int motorOut, PotentiometerData &potData)

{

 int pulse_wide, pulse_width, potVal;

 // Read values from potentiometer

 potVal = analogRead(controlIn);

 // Subtract the old reading and add the new reading

 potData.total = potData.total - potData.readings[potData.readIndex] + potVal;

 // Store the new reading in the array

 potData.readings[potData.readIndex] = potVal;

 // Increment the index, wrapping back to 0 if necessary

 potData.readIndex = (potData.readIndex + 1) % numReadings;

 // Calculate the average of the readings

 potData.averagePotVal = potData.total / numReadings;

 // Convert to 5V range

 potData.averagePotVal = map(potData.averagePotVal, 0, 1023, 0, (1023 * 5) /

3.3);

 // Convert to pulse width

 pulse_wide = map(potData.averagePotVal, 0, 1023, MIN_PULSE_WIDTH,

MAX_PULSE_WIDTH);

 pulse_width = int(float(pulse_wide) / 1000000 * FREQUENCY * 4096);

 // Print potentiometer value and motor position for debugging

 Serial.print("Control ");

 Serial.print(controlIn);

 Serial.print(": ");

 Serial.println(potData.averagePotVal);

pg. 24

 // Control Motor

 pwm.setPWM(motorOut, 0, pulse_width);

}

// Initialize the moving average data for each potentiometer

PotentiometerData potDataA = { {0}, 0, 0, 0};

PotentiometerData potDataB = { {0}, 0, 0, 0};

PotentiometerData potDataC = { {0}, 0, 0, 0};

PotentiometerData potDataD = { {0}, 0, 0, 0};

PotentiometerData potDataE = { {0}, 0, 0, 0};

PotentiometerData potDataF = { {0}, 0, 0, 0};

void loop()

{

 buttonState = digitalRead(buttonPin);

 if (buttonState == LOW) // When button is pressed, read sensor and control LEDs

 {

 // Clear the trigger pin

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 // Trigger the sensor by setting the trigPin high for 10 microseconds

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 // Read the echo pin and calculate the distance

 duration = pulseIn(echoPin, HIGH);

 distance = duration * 0.0344 / 2;

 // Control LED based on distance

 if (distance > safeDistance)

 {

 digitalWrite(greenLedPin, HIGH);

 digitalWrite(yellowLedPin, LOW);

 digitalWrite(redLedPin, LOW);

 }

 else if (distance <= safeDistance && distance > warningDistance)

 {

 digitalWrite(greenLedPin, LOW);

 digitalWrite(yellowLedPin, HIGH);

 digitalWrite(redLedPin, LOW);

 }

pg. 25

 else

 {

 digitalWrite(greenLedPin, LOW);

 digitalWrite(yellowLedPin, LOW);

 digitalWrite(redLedPin, HIGH);

 }

 }

 else // When button is not pressed, control motors if not in danger zone

 {

 if (distance > warningDistance)

 {

 // Control Motor A

 moveMotor(controlA, motorA, potDataA);

 // Control Motor B

 moveMotor(controlB, motorB, potDataB);

 // Control Motor C

 moveMotor(controlC, motorC, potDataC);

 // Control Motor D

 moveMotor(controlD, motorD, potDataD);

 // Control Motor E

 moveMotor(controlE, motorE, potDataE);

 // Control Motor F

 moveMotor(controlF, motorF, potDataF);

 }

 delay(600); // Add a 600 ms delay between each iteration

 }

}

